嵌入式 ADC基础知识

news/2024/10/11 22:50:39 标签: 嵌入式硬件

        在现实世界中,常见的信号大都是模拟量,像温度、声音、气压等,但在信号的处理与传输中,为了减少噪声的干扰,较多使用的是数字量。因此我们经常会将现实中的模拟信号,通过 ADC 转换为数字信号进行运算、传输、储存,再通过 DAC 转换为模拟信号,呈现出来。

        但要注意的是,现实中的模拟量连续的,意味着它有无限的分辨率,但转换为数字量之后,将会丢失一定的精度,在时间和幅度上都会变成离散的值。

ADC 基本原理ADC(Analog-to-Digital Converter)指模拟 / 数字转换器,可将真实世界的模拟信号,例如温度、压力、声音或者图像等,转换成更容易储存、处理和发射的数字形式。

        采样因为输入的模拟信号是连续的,而将要输出的数字信号是离散的,所以只能进行瞬时采样,再将采样值转换为输出的数字量,再重新开始下一轮的采样。

        为了能准确无误用信号Vs 表示出模拟输入信号 V1,至少需要满足采样定理,即采样频率 fs 在模拟输入信号最高频率分量 fi(max) 的 2 倍以上(通常会取 3~5 倍,但太高的频率需要更快的工作速度,需要综合成本考虑):

        只要满足了采样定理,即可用低通滤波器,将 Vs 还原为 V1。滤波器电压传输系数应在低于 fi(max) 时保持不变,在 fs−fi(max)前迅速下降为 0。

        保持保持电路能够采样结束后,让信号保持一段时间,使 ADC 有充分时间进行转换。一般采样脉冲频率越高、采样越密,采样值就越多,采样保持电路的输出信号就越接近输入信号的波形。采样 - 保持电路的基本形式如下:

采样 - 保持的基本步骤:

  1. 当采样控制信号 VL 为高电平时,使 MOS 管 T 导通,V1 经过电阻 R1 和 MOS管 T,给电容 Ch 充电。
  2. 若取 R1=RF,则充电结束后 V0=VC=−V1。
  3. 当采样控制信号 VL 跌落回电平时,MOS 管 T 截止,电容 Ch 上的电压不会突变,所以 V0 也能保持一段时间,采样结果得以被记录下来。

        量化采样得到的数字量,必须为某个规定的最小数值单位的整数倍,这个转换过程称为量化,所取的最小数量单位称为量化单位 Δ。数字信号最低有效位 LSB 的 1 所代表的数量大小就等于 Δ。

        因为模拟电压是连续的,不一定能被 Δ 整除,因此会出现量化误差。

        量化级越细,量化误差就越小,所用二进制代码的位数就越多,电路也越复杂。

        编码将量化的结果用二进制(或其他进制)表示出来,称为编码。

ADC 常见类型
        并联比较型(Flash) 并联比较型 ADC 又称 Flash ADC,属于直接 ADC,能将输入的模拟电压直接转换为输出的数字量,不需要经过中间变量转换。它由一系列电压比较器组成,每个比较器将输入信号与唯一的分压后的参考电压进行比较。比较器的输出连接编码器电路的输入,产生二进制的输出。

        不仅在操作理论方面是最简单的,而且在速度方面也是最有效的 ADC 技术,仅受比较器和栅极传播延迟的限制。不幸的是,对于任何给定数量的输出位,它是最密集的组件

        并联比较型 ADC 的转换速度是最快的,但缺点是需要使用很多电压比较器和大规模的代码转换电路(常见的并联比较型输出大都在 8 位以下)。

        逐次逼近型逐次逼近型(Successive Approximation)ADC 采用的是一种反馈比较型电路结构。由比较器、DAC、寄存器、时钟脉冲源和控制逻辑等组成:

        其原理是,设定一个数字量,通过 DAC 得到一个对应的输出模拟电压。将这个模拟电压和输入的模拟电压信号从最高位开始顺序地相比较,如果两者不相等,则调整所取的数字量,直到两个模拟电压相等为止,最后所取的这个数字量就是所求的转换结果。其过程像用天平去称量位置重量的物体,先加大砝码,再逐次添加或换用小砝码。

        逐次逼近型 ADC 的优点是速度高,功耗低,在低分辨率(12 位)下具有性价比优势;缺点是转换速率一般,电路规模中等。

        双积分型(V-T) 双积分型 ADC 是一种间接 ADC,它首先将输入的模拟电压信号转换成与之成正比的时间宽度信号,随后在此时间宽度内,对固定频率的时钟进行脉冲计数,计数的值就是正比于模拟输入电压的数字信号。因此,也将这种 ADC 称为电压 - 时间变换型(V-T)ADC。

        双积分型 ADC 由积分器、比较器、计数器、控制逻辑和时钟信号源组成,如图:

        双积分型 ADC 的优点是工作性能稳定(两次积分,排除 RC 参数差异)、抗干扰能力强(积分受噪声影响不大);缺点是转换速率低(转换精度依赖于积分时间)。

        Σ-Δ 型Σ-Δ 调制型 ADC 的原理与上文的并联型与逐次逼近型 ADC 不同,它不是将采样信号的绝对值进行量化编码,而是将两次相邻采样值之差(增量)进行量化与编码的。其基本结构如下:

        它由线性电压积分器、1 位输出量化器、1 位输入 DAC 和一个求和电路组成。经过量化器处理输出的数字信号 V0,经过 DAC 转换为模拟信号 VF,并负反馈至输入端的求和电路,与输入信号 V1 相减,得到差值 VD。积分器对 VD 作线性积分,输出电压 VINT 至量化器,由量化器量化为 1 位的数字量输出。由于采用 1 为输出的量化器,所以在连续工作的状态下,输出信号 V0 是由 0 和 1 组成的数据流。

        Σ-Δ 调制型 ADC 的优点是可以容易地做到高分辨率测量;缺点是转换速率低、电路规模大。

        电压 - 频率变换型(V-F) 电压 - 频率变换型(V-F)ADC 是一种间接 ADC。主要由 V-F 变换器(也称为压控振荡器 Voltage Controlled Oscillator,简称 VCO)、计数器及其时钟信号控制闸门、寄存器、单稳态触发器等几部分构成:        

其原理是:

· 将输入的模拟电压信号转换为对应的频率信号。

· 在固定的时间内对频信号率计数。

· 计数结果正比于输入电压的幅值。

ADC 主要参数 · 分辨率 :输出数字量变化一个相邻数值所需输入模拟电压的变化量,一般用二进制的位数表示,分辨率为 n 表示是满刻度 Fs 的 2 的 n 次方分之一。

· 量化误差 :ADC 的有限位数对模拟量进行量化而引起的误差。要准确表示模拟量,ADC 的位数需要很大甚至无穷大,所以 ADC 器件都有量化误差。一个分辨率有限的 ADC 的阶梯状转换特性曲线与具有无限分辨率的 ADC 转化特性曲线之间的最大偏差就是量化误差。

· 转换速率 :每秒进行转换的次数。

· 转换量程 :ADC 所能测量的最大电压,一般等于参考电压,超过此电压有可能损毁 ADC。当信号较小时可以考虑降低参考电压来提高分辨率,改变参考电压后,对应的转换值也会改变,计算实际电压时需要将参考电压考虑进去,所以说一般参考电压都要做到很稳定且不带有高次谐波。

· 偏移误差 :ADC 输入信号为 0 时,但 ADC 转换输出信号不为 0 的值。

· 满刻度误差 :ADC 满刻度输出时对应的输入信号与理想输入信号值之差。

· 线性度 :实际 ADC 的转移函数和理想直线的最大偏移。


http://www.niftyadmin.cn/n/5687857.html

相关文章

9--苍穹外卖-SpringBoot项目中Redis的介绍及其使用实例 详解

目录 Redis入门 Redis简介 Redis服务启动与停止 服务启动命令 Redis数据类型 5种常用数据类型介绍 各种数据类型的特点 Redis常用命令 字符串操作命令 哈希操作命令 列表操作命令 集合操作命令 有序集合操作命令 通用命令 在java中操作Redis Redis的Java客户端 …

计算机网络:计算机网络概述:网络、互联网与因特网的区别

文章目录 网络、互联网与因特网的区别网络分类 互联网因特网基于 ISP 的多层次结构的互连网络因特网的标准化工作因特网管理机构因特网的组成 网络、互联网与因特网的区别 若干节点和链路互连形成网络,若干网络通过路由器互连形成互联网 互联网是全球范围内的网络…

【Kubernetes】常见面试题汇总(四十九)

目录 110.假设一家公司希望通过采用新技术来优化其工作负载的分配。公司如何有效地实现这种资源分配? 111.考虑一家拼车公司希望通过同时扩展其平台来增加服务器数量。您认为公司将如何处理服务器及其安装? 特别说明: 题目 1-68 属于【…

线程池面试集

目录 线程池中提交一个任务的流程是怎样的? 线程池有五种状态 如何优雅的停止一个线程? 线程池的核心线程数、最大线程数该如何设置? 如何理解Java并发中的可见性、原子性、有序性? Java死锁如何避免? 线程池中提交一个任务的流程是怎样的? 线程池有五种状态 如何优…

【Python】Flask-Admin:构建强大、灵活的后台管理界面

在 Web 应用开发中,构建一个直观且功能丰富的后台管理系统对于处理数据和维护应用至关重要。虽然构建一个完全自定义的管理后台界面非常耗时,但 Flask-Admin 提供了一个简洁、灵活的解决方案,可以让开发者快速集成一个功能齐全的后台管理系统…

李宏毅机器学习2022-HW8-Anomaly Detection

文章目录 TaskBaselineReportQuestion2 Code Link Task 异常检测Anomaly Detection 将data经过Encoder,在经过Decoder,根据输入和输出的差距来判断异常图像。training data是100000张人脸照片,testing data有大约10000张跟training data相同…

Ceph RocksDB 深度调优

介绍 调优 Ceph 可能是一项艰巨的挑战。在 Ceph、RocksDB 和 Linux 内核之间,实际上有数以千计的选项可以进行调整以提高存储性能和效率。由于涉及的复杂性,比较优的配置通常分散在博客文章或邮件列表中,但是往往都没有说明这些设置的实际作…

php email功能实现:详细步骤与配置技巧?

php email发送功能详细教程?如何使用php email服务? 无论是用户注册、密码重置,还是订单确认,电子邮件都是与用户沟通的重要手段。AokSend将详细介绍如何实现php email功能,并提供一些配置技巧,帮助你更好…